Identification of the sulfoxide functionality in protonated analytes via ion/molecule reactions in linear quadrupole ion trap mass spectrometry.

نویسندگان

  • Huaming Sheng
  • Peggy E Williams
  • Weijuan Tang
  • Minli Zhang
  • Hilkka I Kenttämaa
چکیده

A mass spectrometric method utilizing gas-phase ion/molecule reactions of 2-methoxypropene (MOP) has been developed for the identification of the sulfoxide functionality in protonated analytes in a LQIT mass spectrometer. Protonated sulfoxide analytes react with MOP to yield an abundant addition product (corresponding to 37-99% of the product ions), which is accompanied by a much slower proton transfer. The total efficiency (percent of gas-phase collisions leading to products) of the reaction is moderate (3-14%). A variety of compounds with different functional groups, including sulfone, hydroxylamino, N-oxide, aniline, phenol, keto, ester, amino and hydroxy, were examined to probe the selectivity of this reaction. Most of the protonated compounds with proton affinities lower than that of MOP react mainly via proton transfer to MOP. The formation of adduct-MeOH ions was found to be characteristic for secondary N-hydroxylamines. N-Oxides formed abundant MOP adducts just like sulfoxides, but sulfoxides can be differentiated from N-oxides based on their high reaction efficiencies. The reaction was tested by using the anti-inflammatory drug sulindac (a sulfoxide) and its metabolite sulindac sulfone. The presence of a sulfoxide functionality in the drug but a sulfone functionality in the metabolite was readily demonstrated. The presence of other functionalities in addition to sulfoxide in the analytes was found not to influence the diagnostic reactivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of epoxide functionalities in protonated monofunctional analytes by using ion/molecule reactions and collision-activated dissociation in different ion trap tandem mass spectrometers.

A mass spectrometric method has been delineated for the identification of the epoxide functionalities in unknown monofunctional analytes. This method utilizes gas-phase ion/molecule reactions of protonated analytes with neutral trimethyl borate (TMB) followed by collision-activated dissociation (CAD) in an ion trapping mass spectrometer (tested for a Fourier-transform ion cyclotron resonance an...

متن کامل

Identification of 2-aminothiazolobenzazepine metabolites in human, rat, dog, and monkey microsomes by ion-molecule reactions in linear quadrupole ion trap mass spectrometry.

2-Aminothiazolobenzazepine (2-ATBA), 7-[(1-methyl-1H-pyrazol-4-yl)methyl]-6,7,8,9-tetrahydro-5H-[1,3]thiazolo[4,5-h][3]benzazepin-2-amine, is a D2 partial agonist that has demonstrated antipsychotic effects in a rodent in vivo efficacy model. The metabolite profile showed that 2-ATBA is mainly metabolized by oxidation. However, identification of the oxidation site(s) in the 2-aminothiazole grou...

متن کامل

Dmd061978 358..366

2-Aminothiazolobenzazepine (2-ATBA), 7-[(1-methyl-1H-pyrazol-4yl)methyl]-6,7,8,9-tetrahydro-5H-[1,3]thiazolo[4,5-h][3]benzazepin2-amine, is a D2 partial agonist that has demonstrated antipsychotic effects in a rodent in vivo efficacy model. The metabolite profile showed that 2-ATBA is mainly metabolized by oxidation. However, identification of the oxidation site(s) in the 2-aminothiazole group ...

متن کامل

Top-down tandem mass spectrometry of tRNA via ion trap collision-induced dissociation.

Transfer RNA is a class of highly modified and structured non-coding RNA molecules generally comprised of 74-95 nucleotides. In this study, tandem mass spectrometry of intact multiply charged tRNA anions of roughly 25 kDa in mass has been demonstrated using a quadrupole/time-of-flight tandem mass spectrometer adapted for ion/ion reaction studies. The sample proved to be a mixture of tRNA molecu...

متن کامل

Substituent effects on the gas-phase fragmentation reactions of sulfonium ion containing peptides.

The multistage mass spectrometric (MS/MS and MS3) gas-phase fragmentation reactions of methionine side-chain sulfonium ion containing peptides formed by reaction with a series of para-substituted phenacyl bromide (XBr where X=CH2COC6H4R, and R=--COOH, --COOCH3, --H, --CH3 and --CH2CH3) alkylating reagents have been examined in a linear quadrupole ion trap mass spectrometer. MS/MS of the singly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Analyst

دوره 139 17  شماره 

صفحات  -

تاریخ انتشار 2014